

Acta Crystallographica Section E **Structure Reports** Online ISSN 1600-5368

Ethyl 2-methyl-6-(propan-2-ylamino)-4sulfanylidene-3H,11H-pyrimido[1,6-c]guinazoline-1-carboxylate

Hong-Xia Li,^a Yu-Su Song,^a Yong-nian Qu,^b Jiang-Bing Lu^b and Hong-Mei Wang^b*

^aCollege of Science, Naval University of Engineering, Wuhan 430033, People's Republic of China, and ^bInstitute of Medicinal Chemistry, Hubei University of Medicine, Shi Yan 442000, People's Republic of China Correspondence e-mail: meirwang@126.com

Received 27 March 2012; accepted 3 May 2012

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.003 Å; R factor = 0.050; wR factor = 0.139; data-to-parameter ratio = 16.3.

The title compound, C₁₈H₂₂N₄O₂S, contains a substituted pyrimidine ring fused to both a benzene ring and a substituted thioxopyrimidine ring. The pyrimidine and thioxopyrimidine rings adopt distorted chair conformations. In the crystal, adjacent molecules are linked by pairs of N-H···S and N-H···O hydrogen bonds to generate centrosymmetric $R_2^2(8)$ and $R_2^2(16)$ loops, respectively. This combination leads to [100] chains of molecules.

Related literature

For further synthetic details, see: Li et al. (2007, 2008); Huang et al. (2009); Zeng et al. (2010). For a related structure, see: Li et al. (2010). For ring conformations, see: Cremer & Pople (1975).

Experimental

Crystal data $C_{18}H_{22}N_4O_2S$ $M_r = 358.46$

Monoclinic, $P2_1/n$ a = 9.4128 (3) Å

b = 10.5636 (5) Å c = 19.2052 (6) Å $\beta = 102.347 \ (1)^{\circ}$ V = 1865.46 (12) Å³ Z = 4

Data collection

Bruker SMART CCD	12093 measured reflections
diffractometer	3857 independent reflections
Absorption correction: multi-scan	3014 reflections with $I > 2\sigma(I)$
(SADABS; Sheldrick, 1996)	$R_{\rm int} = 0.076$
$T_{\min} = 0.955, T_{\max} = 0.962$	

Refinement

 $\begin{array}{l} R[F^2 > 2\sigma(F^2)] = 0.050 \\ wR(F^2) = 0.139 \end{array}$ S = 1.033857 reflections 236 parameters 2 restraints

H atoms treated by a mixture of independent and constrained refinement $\Delta \rho_{\rm max} = 0.34$ e Å⁻³ $\Delta \rho_{\rm min} = -0.27$ e Å⁻³

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$\overline{\begin{array}{c} N2 - H2A \cdots O2^{i} \\ N4 - H4A \cdots S1^{ii} \end{array}}$	0.86 (1) 0.87 (1)	2.26 (1) 2.42 (1)	3.102 (2) 3.2804 (15)	165 (2) 172 (2)
Symmetry codes: (i)	-x, -y + 1, -z	+2; (ii) $-x+1$, -y + 1, -z + 2.	

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

The authors gratefully acknowledge financial support of this work by the Foundation of Naval University of Engineering (grant No. HGDQNJJ11007) and Hubei University of Medicine (grant Nos. 2010QDJ02 and 2011XS13).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB6711).

References

- Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA
- Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
- Huang, N. Y., Liang, Y. J., Ding, M. W., Fu, L. W. & He, H. W. (2009). Bioorg. Med. Chem. Lett. 19, 831-834.
- Li, W. J., Liu, S., He, P. & Ding, M. W. (2010). Tetrahedron, 66, 8151-8159.
- Li, H. X., Sun, Y. & Ding, M. W. (2008). Synth. Commun. 38, 4328-4336.
- Li, H. X., Xie, C., Ding, M. W., Liu, Z. M. & Yang, G. F. (2007). Synlett, pp. 2280-2282
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Zeng, X. H., Liu, M., Ding, M. W. & He, H. W. (2010). Synth. Commun. 40, 1453-1460.

Mo $K\alpha$ radiation $\mu = 0.19 \text{ mm}^{-1}$

 $0.30 \times 0.20 \times 0.20$ mm

T = 298 K

supplementary materials

Acta Cryst. (2012). E68, o1821 [doi:10.1107/S1600536812019952]

Ethyl 2-methyl-6-(propan-2-ylamino)-4-sulfanylidene-3*H*,11*H*-pyrimido[1,6c]quinazoline-1-carboxylate

Hong-Xia Li, Yu-Su Song, Yong-nian Qu, Jiang-Bing Lu and Hong-Mei Wang

Comment

In recent years, we have been engaged in the preparation of heterocyclic derivatives using the aza-Wittig reaction (Li *et al.* 2007, 2008; Huang *et al.* 2009; Li *et al.* 2010; Zeng *et al.*, 2010). We present here the crystal structure of the title compound (Fig. 1). The molecule contains a substituted pyrimidine ring fused to a benzene ring and a substituted thioxopyrimidine ring. The centre ring of pyrimidine moiety adopts a distored chair conformation [$\varphi = 208.8$ (2)° and $\theta = 68.85$ (19)°, Puckering Amplitude = 0.5502 (17)Å], and the substituted thioxopyrimidine ring also show a distorted chair form [$\varphi = 214.6$ (4)° and $\theta = 113.9$ (3)°, Puckering Amplitude = 0.3827 (17)Å] (Cremer & Pople, 1975). In the crystal, there are N—H…O and N—H…S (Table 1) hydrogen bonds.

Experimental

To a solution of iminophosphorane prepared according to Li *et al.* (2010) (0.55 g, 1 mmol) in CH₃CN (10 mL) was added phenylisocyanate (0.12 g, 1 mmol) under nitrogen at room temperature. After stirred for 2 h at room temperature, K_2CO_3 (0.014 g,0.1 mmol) was added and the mixture was stirred for 1 h. The solvent was removed off under reduced pressure and the residue was recrystallized from methylene dichloride and ethanol to give the title compound (I) in yield of 85% (m.p. 490 K). Colourless blocks were obtained from a dichloromethane solution at room temperature.

Refinement

The H atoms attached to atoms N2 and N4 was located in a difference Fourier map and allowed to ride on their parent atom with a restraint of N—H = 0.86 Å. Other H atoms were placed at calculated positions and treated as riding atoms, with C—H = 0.96–0.97 Å, and $U_{iso}(H) = 1.2 U_{eq}(C)$ or 1.5 $U_{eq}(C)$ for methyl H atoms.

Computing details

Data collection: *SMART* (Bruker, 2001); cell refinement: *SAINT* (Bruker, 2001); data reduction: *SAINT* (Bruker, 2001); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *PLATON* (Spek, 2009); software used to prepare material for publication: *SHELXTL* (Sheldrick, 2008).

Figure 1

View of the molecule showing displacement ellipsoids drawn at the 50% probability level.

Ethyl 2-methyl-6-(propan-2-ylamino)-4-sulfanylidene-3H,11H- pyrimido[1,6-c]quinazoline-1-carboxylate

Crystal data

 $C_{18}H_{22}N_4O_2S$ $M_r = 358.46$ Monoclinic, $P2_1/n$ Hall symbol: -P 2yn a = 9.4128 (3) Åb = 10.5636(5) Å c = 19.2052 (6) Å $\beta = 102.347 (1)^{\circ}$ $V = 1865.46 (12) \text{ Å}^3$ Z = 4

Data collection

Bruker SMART CCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator $R_{\rm int} = 0.076$ φ and ω scans $\theta_{\rm max} = 26.5^{\circ}, \ \theta_{\rm min} = 2.2^{\circ}$ $h = -11 \rightarrow 11$ Absorption correction: multi-scan $k = -13 \rightarrow 10$ (SADABS; Sheldrick, 1996) $T_{\rm min} = 0.955, \ T_{\rm max} = 0.962$ $l = -24 \rightarrow 24$

F(000) = 760.0 $D_{\rm x} = 1.288 {\rm Mg} {\rm m}^{-3}$ Mo *K* α radiation, $\lambda = 0.71073$ Å Cell parameters from 4329 reflections $\theta = 2.2 - 27.7^{\circ}$ $\mu = 0.19 \text{ mm}^{-1}$ T = 298 KBlock, colorless $0.30 \times 0.20 \times 0.20$ mm

12093 measured reflections 3857 independent reflections 3014 reflections with $I > 2\sigma(I)$ Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.050$	Hydrogen site location: inferred from
$wR(F^2) = 0.139$	neighbouring sites
S = 1.03	H atoms treated by a mixture of independent
3857 reflections	and constrained refinement
236 parameters	$w = 1/[\sigma^2(F_o^2) + (0.0772P)^2 + 0.1069P]$
2 restraints	where $P = (F_o^2 + 2F_c^2)/3$
Primary atom site location: structure-invariant	$(\Delta/\sigma)_{\rm max} = 0.025$
direct methods	$\Delta ho_{ m max} = 0.34 \ m e \ m \AA^{-3}$
	$\Delta ho_{ m min} = -0.27 \ m e \ m \AA^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2$ sigma(F^2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

-	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
C1	0.09011 (18)	0.72990 (17)	0.84262 (9)	0.0364 (4)
C2	0.0719 (2)	0.67844 (18)	0.77505 (10)	0.0462 (5)
H2	0.0294	0.5991	0.7656	0.055*
C3	0.1170 (3)	0.7450 (2)	0.72128 (10)	0.0570 (6)
Н3	0.1042	0.7107	0.6758	0.068*
C4	0.1809 (3)	0.8623 (2)	0.73568 (11)	0.0558 (6)
H4	0.2120	0.9067	0.6998	0.067*
C5	0.1991 (2)	0.91431 (19)	0.80297 (10)	0.0494 (5)
Н5	0.2422	0.9935	0.8120	0.059*
C6	0.1535 (2)	0.84940 (17)	0.85729 (9)	0.0380 (4)
C7	0.17531 (19)	0.83292 (16)	0.97816 (9)	0.0348 (4)
C8	0.04635 (19)	0.66650 (16)	0.90571 (9)	0.0345 (4)
H8	-0.0437	0.7061	0.9126	0.041*
С9	0.2171 (2)	1.00033 (18)	1.06939 (10)	0.0466 (5)
Н9	0.1470	1.0559	1.0387	0.056*
C10	0.1933 (3)	1.0103 (2)	1.14433 (12)	0.0612 (6)
H10A	0.0963	0.9833	1.1453	0.092*
H10B	0.2063	1.0965	1.1601	0.092*
H10C	0.2621	0.9573	1.1753	0.092*
C11	0.3679 (3)	1.0396 (2)	1.06328 (15)	0.0795 (8)
H11A	0.4385	0.9897	1.0953	0.119*
H11B	0.3823	1.1275	1.0754	0.119*
H11C	0.3791	1.0265	1.0153	0.119*
C12	0.28831 (19)	0.62791 (16)	0.97962 (9)	0.0343 (4)
C13	0.13802 (19)	0.44969 (16)	0.92654 (9)	0.0363 (4)

G14				0.0055 (1)
C14	0.02360 (19)	0.52521 (16)	0.90196 (9)	0.0355 (4)
C15	0.1435 (2)	0.30767 (17)	0.92606 (12)	0.0502 (5)
H15A	0.1103	0.2753	0.9665	0.075*
H15B	0.2417	0.2804	0.9284	0.075*
H15C	0.0821	0.2765	0.8830	0.075*
C16	-0.1233 (2)	0.47530 (18)	0.87161 (9)	0.0404 (4)
C17	-0.3692 (2)	0.5353 (2)	0.82596 (12)	0.0552 (5)
H17A	-0.4100	0.4905	0.8612	0.066*
H17B	-0.3745	0.4806	0.7849	0.066*
C18	-0.4504 (3)	0.6539 (3)	0.8048 (2)	0.0979 (11)
H18A	-0.4431	0.7077	0.8457	0.147*
H18B	-0.5508	0.6345	0.7856	0.147*
H18C	-0.4101	0.6966	0.7693	0.147*
S1	0.44958 (5)	0.68615 (5)	1.01900 (3)	0.04898 (19)
N1	0.16807 (17)	0.90727 (14)	0.92474 (8)	0.0399 (4)
N2	0.18611 (17)	0.86974 (14)	1.04561 (8)	0.0387 (4)
H2A	0.191 (2)	0.8115 (14)	1.0774 (8)	0.046*
N3	0.16359 (15)	0.69732 (13)	0.96840 (7)	0.0326 (3)
N4	0.27056 (16)	0.50620 (14)	0.95704 (8)	0.0393 (4)
H4A	0.3503 (15)	0.4619 (16)	0.9646 (10)	0.047*
01	-0.21898 (14)	0.57011 (13)	0.85569 (8)	0.0525 (4)
02	-0.15658 (16)	0.36556 (14)	0.86187 (8)	0.0569 (4)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0333 (9)	0.0385 (10)	0.0363 (9)	0.0059 (8)	0.0045 (7)	0.0066 (7)
C2	0.0516 (12)	0.0455 (11)	0.0392 (10)	0.0030 (9)	0.0045 (9)	0.0016 (8)
C3	0.0744 (15)	0.0612 (14)	0.0352 (10)	0.0142 (12)	0.0113 (10)	0.0055 (9)
C4	0.0695 (15)	0.0559 (13)	0.0460 (11)	0.0109 (11)	0.0215 (10)	0.0180 (10)
C5	0.0567 (13)	0.0425 (11)	0.0509 (11)	0.0035 (9)	0.0163 (10)	0.0131 (9)
C6	0.0387 (10)	0.0348 (10)	0.0401 (9)	0.0068 (8)	0.0077 (8)	0.0051 (7)
C7	0.0306 (9)	0.0329 (9)	0.0409 (9)	0.0019 (7)	0.0077 (7)	-0.0004 (7)
C8	0.0298 (8)	0.0366 (10)	0.0357 (8)	0.0006 (7)	0.0041 (7)	0.0004 (7)
C9	0.0554 (12)	0.0361 (10)	0.0481 (11)	0.0040 (9)	0.0107 (9)	-0.0051 (8)
C10	0.0690 (15)	0.0603 (14)	0.0544 (12)	0.0072 (12)	0.0140 (11)	-0.0168 (10)
C11	0.0865 (19)	0.0674 (17)	0.0933 (19)	-0.0312 (14)	0.0387 (16)	-0.0277 (14)
C12	0.0369 (9)	0.0324 (9)	0.0338 (8)	0.0020 (7)	0.0077 (7)	0.0034 (7)
C13	0.0379 (10)	0.0346 (9)	0.0379 (9)	-0.0025 (7)	0.0113 (7)	0.0015 (7)
C14	0.0362 (9)	0.0358 (10)	0.0348 (9)	-0.0028 (7)	0.0085 (7)	0.0006 (7)
C15	0.0483 (12)	0.0375 (11)	0.0662 (13)	-0.0022 (9)	0.0150 (10)	0.0009 (9)
C16	0.0414 (10)	0.0440 (11)	0.0356 (9)	-0.0047 (9)	0.0074 (8)	0.0039 (8)
C17	0.0373 (11)	0.0642 (14)	0.0587 (12)	-0.0093 (10)	-0.0021 (9)	-0.0010 (10)
C18	0.0541 (16)	0.0719 (18)	0.148 (3)	0.0067 (13)	-0.0231 (17)	-0.0301 (18)
S 1	0.0332 (3)	0.0401 (3)	0.0684 (4)	0.00183 (19)	-0.0007(2)	-0.0082 (2)
N1	0.0450 (9)	0.0325 (8)	0.0420 (8)	0.0024 (7)	0.0088 (7)	0.0039 (6)
N2	0.0451 (9)	0.0327 (8)	0.0389 (8)	0.0017 (7)	0.0104 (7)	-0.0004 (6)
N3	0.0310 (7)	0.0323 (8)	0.0335 (7)	0.0012 (6)	0.0043 (6)	0.0010 (6)
N4	0.0338 (8)	0.0320 (8)	0.0507 (9)	0.0033 (6)	0.0057 (7)	0.0006 (7)
O1	0.0345 (7)	0.0504 (9)	0.0675 (9)	-0.0043 (6)	-0.0002 (6)	-0.0017 (7)

02	0.0522 (9)	0.0447 (9)	0.0673 (9)	-0.0126 (7)	-0.0016 (7)	0.0034 (7)
Geome	tric parameters (2	Å, [•])				
C1—C	2	1.384 (2)		C11—H11A		0.9600
C1—C	6	1.399 (3)		C11—H11B		0.9600
C1—C	8	1.516 (2)		C11—H11C		0.9600
С2—С	3	1.389 (3)		C12—N4		1.356 (2)
С2—Н	2	0.9300		C12—N3		1.362 (2)
С3—С	4	1.380 (3)		C12—S1		1.6625 (18)
С3—Н	[3	0.9300		C13—C14		1.342 (2)
С4—С	5	1.381 (3)		C13—N4		1.394 (2)
С4—Н	[4	0.9300		C13—C15		1.501 (2)
С5—С	6	1.390 (3)		C14—C16		1.478 (2)
С5—Н	[5	0.9300		C15—H15A		0.9600
C6—N	1	1.412 (2)		C15—H15B		0.9600
C7—N	1	1.282 (2)		C15—H15C		0.9600
C7—N	2	1.335 (2)		C16—O2		1.205 (2)
C7—N	[3	1.446 (2)		C16—O1		1.338 (2)
C8—N	[3	1.485 (2)		C17—O1		1.454 (2)
C8—C	14	1.507 (2)		C17—C18		1.479 (3)
С8—Н	[8	0.9800		C17—H17A		0.9700
C9—N	2	1.463 (2)		C17—H17B		0.9700
С9—С	10	1.507 (3)		C18—H18A		0.9600
С9—С	11	1.507 (3)		C18—H18B		0.9600
С9—Н	[9	0.9800		C18—H18C		0.9600
C10—]	H10A	0.9600		N2—H2A		0.861 (9)
C10—1	H10B	0.9600		N4—H4A		0.870 (9)
C10—]	H10C	0.9600				
С2—С	1—С6	120.35 (1	6)	H11A—C11—H110	C	109.5
С2—С	1—С8	125.15 (1	6)	H11B—C11—H110	2	109.5
С6—С	1—С8	114.50 (1	5)	N4—C12—N3		114.64 (15)
C1—C	2—С3	120.16 (1	9)	N4—C12—S1		122.31 (13)
C1—C	2—H2	119.9		N3—C12—S1		123.04 (13)
С3—С	2—H2	119.9		C14—C13—N4		118.16 (16)
C4—C	3—C2	119.69 (1	9)	C14—C13—C15		128.17 (17)
C4—C	3—Н3	120.2		N4—C13—C15		113.67 (16)
С2—С	3—Н3	120.2		C13—C14—C16		122.63 (17)
С3—С	4—C5	120.42 (1	9)	C13—C14—C8		118.46 (16)
С3—С	4—H4	119.8		C16—C14—C8		118.91 (15)
С5—С	4—H4	119.8		С13—С15—Н15А		109.5
C4—C	5—C6	120.66 (1	9)	C13—C15—H15B		109.5
C4—C	5—H5	119.7		H15A—C15—H15	В	109.5
C6—C	5—H5	119.7		C13—C15—H15C		109.5
С5—С	6—C1	118.72 (1	7)	H15A—C15—H15	С	109.5
С5—С	6—N1	119.32 (1	7)	H15B—C15—H150	C	109.5
C1—C	6—N1	121.92 (1	5)	O2-C16-O1		122.99 (17)
N1—C	27—N2	125.29 (1	6)	O2—C16—C14		126.50 (18)
N1C	27—N3	120.91 (1	5)	O1-C16-C14		110.52 (16)

supplementary materials

N2—C7—N3	113.72 (15)	O1—C17—C18	107.19 (18)
N3—C8—C14	109.22 (13)	O1—C17—H17A	110.3
N3—C8—C1	105.62 (13)	C18—C17—H17A	110.3
C14—C8—C1	117.33 (14)	O1—C17—H17B	110.3
N3—C8—H8	108.1	C18—C17—H17B	110.3
С14—С8—Н8	108.1	H17A—C17—H17B	108.5
С1—С8—Н8	108.1	C17—C18—H18A	109.5
N2—C9—C10	107.66 (17)	C17—C18—H18B	109.5
N2-C9-C11	111.32 (17)	H18A—C18—H18B	109.5
C10—C9—C11	112.96 (19)	C17—C18—H18C	109.5
N2—C9—H9	108.3	H18A—C18—H18C	109.5
С10—С9—Н9	108.3	H18B—C18—H18C	109.5
С11—С9—Н9	108.3	C7—N1—C6	116.54 (15)
C9—C10—H10A	109.5	C7—N2—C9	123.11 (15)
C9—C10—H10B	109.5	C7—N2—H2A	117.5 (13)
H10A—C10—H10B	109.5	C9—N2—H2A	118.4 (13)
C9—C10—H10C	109.5	C12—N3—C7	118.27 (14)
H10A—C10—H10C	109.5	C12—N3—C8	118.45 (14)
H10B-C10-H10C	109.5	C7—N3—C8	110.19 (13)
С9—С11—Н11А	109.5	C12—N4—C13	125.35 (15)
С9—С11—Н11В	109.5	C12—N4—H4A	114.4 (14)
H11A—C11—H11B	109.5	C13—N4—H4A	120.2 (14)
C9—C11—H11C	109.5	C16—O1—C17	116.80 (15)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H…A	$D \cdots A$	D—H··· A
N2—H2 A ···O2 ⁱ	0.86(1)	2.26(1)	3.102 (2)	165 (2)
N4—H4A····S1 ⁱⁱ	0.87 (1)	2.42 (1)	3.2804 (15)	172 (2)

Symmetry codes: (i) -*x*, -*y*+1, -*z*+2; (ii) -*x*+1, -*y*+1, -*z*+2.